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Case-control study

Comprised of two separate samples:

Cases–with disease
Controls–without disease

Allows oversampling of cases (so similar number as controls)

Minimize # of exposures that need to be assessed for a given
level of statistical power

Economical approach for assessing association between
(genetic) exposures and disease
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Case-control study

Measuring exposures in genetic association studies is
expensive

GWAS
Whole exome/genome sequencing

‘Make the most’ of considerable investment

→ Secondary
phenotypes
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Secondary phenotypes

Most studies measure phenotypes in addition to primary
(case-control)

opportunistic
related to underlying disease process

Studying genetic influences on secondary phenotype may be of
interest in itself or may help understanding of underlying
disease process
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Problem

Case-control study does not constitute a random sample from
the general population

If sampling isn’t taken into account during analysis

→ association between genetic variant and secondary
phenotype can be BIASED
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Previous Studies

Richardson et al. (2007) [1] proposed a weighted regression
model.

Monsees et al. (2009) [2] extended the approach it be
applicable to more general phenotypes and genetic exposures.
Both approaches require that the sampling probabilities are
known (nested case-control design).

Lin and Zeng (2009) [3] proposed a method (SPREG) based
on retrospective likelihood of the genotype and secondary
phenotypes conditional on the disease status.

Li et al. (2010) [4] proposed a rare disease model assuming
binary secondary phenotype.

Wei et al. (2013) [5] proposed a robust regression approach.
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Our Approach: preview

Based on inverse-probability-weighted estimating equations
from restricted-moment-model framework

Flexible modeling of various types of secondary phenotypes
Covariates

Computationally efficient

Provides practical tool for genome-wide analyses

For clarity, this presentation will focus on linear model
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Notation

G – genotype information; i.e., G = 0, 1, 2

D – case-control status. D = 1 if case; D = 0 if control

Y – secondary phenotype

n1 – # of cases

n0 – # of controls
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Random sampling

If Y is a quantitative phenotype, we can model the
relationship between Y and G by

Y = β0 + β1G+ ε,

where β = (β0, β1)
T are parameters and E(ε|G) = 0

If subjects (Gi, Yi); i = 1, ..., n represent a random sample
from the population, we can estimate β by obtaining the root,
β̂, of the following estimating equations

Uβ =

n∑
i=1

Uβ,i(Yi, Gi) =

( ∑n
i=1(Yi − β0 − β1Gi)∑n

i=1Gi(Yi − β0 − β1Gi)

)

β̂ is a consistent estimator of the true population β
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Case-control sampling

However, when D is related to G and/or Y , the distribution
of (G, Y ) obtained under case-control sampling can be
distorted from the population distribution

Thus, if (Gi, Yi); i = 1, ..., n0 + n1 represents a combined
case-control sample, the root, β̂naive, of

Uβ =

n0+n1∑
i=1

Uβ,i(Yi, Gi) =

( ∑n
i=1(Yi − β0 − β1Gi)∑n

i=1Gi(Yi − β0 − β1Gi)

)

is not always a consistent estimator of the true population β

We call β̂naive the naive estimator of β
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Our approach

We can prove the following:

E

[
Uβ(G, Y )

1− pGY

∣∣∣∣∣D = 0

]
= 0 ⇐⇒ E∗[Uβ(G, Y )] = 0

and

E

[
Uβ(G, Y )

pGY

∣∣∣∣∣D = 1

]
= 0 ⇐⇒ E∗[Uβ(G, Y )] = 0,

‘∗’ indicates that this expectation is taken with respect to the
true distribution that generated G and Y in the population

pGY denotes the conditional probability of being a case in the
population
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Our approach

Thus, if we define two new estimating equations as

Ũ0
β =

n0∑
i=1

Uβ,i(Yi, Gi)

1− pGiYi

and

Ũ1
β =

n1+n0∑
i=n0+1

Uβ,i(Yi, Gi)

pGiYi
,

the roots, β̂0 of Ũ0
β and β̂1 of Ũ1

β , will each be consistent
estimators of the population β
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Estimating pGY with case-control data

If we model pGY as

pGY ≡ Pr(D = 1|G, Y ) =
eγ0+γ1G+γ2Y

1 + eγ0+γ1G+γ2Y

γ1 and γ2 can be reliably estimated from case-control data

In general, the population intercept is not identifiable from
case-control data

However, we can still estimate pGY in two complementary
cases:

1 When the population prevalence is known
2 When the disease is rare in the population
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Estimating pGY with known population prevalence

Let γ∗0 be the intercept implied by applying the logistic
regression model to case-control data. Let λ denote the true
population disease prevalence, then

γ0 = γ∗0 + log

(
n0
n1

)
+ log

(
λ

1− λ

)

Thus, we can estimate pGY by

p̂GY =
e
γ̂∗0+log

(
n0
n1

)
+log( λ

1−λ)+γ̂1G+γ̂2Y

1 + e
γ̂∗0+log

(
n0
n1

)
+log( λ

1−λ)+γ̂1G+γ̂2Y
, (1)

where γ̂∗0 , γ̂1, γ̂2 are the parameter estimates obtained by
applying logistic regression to the case-control sample
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Estimating pGY under a rare disease assumption

When the disease is rare in the population, we have that

pGY = Pr(D = 1|G, Y ) ≈ eγ0+γ1G+γ2Y

1− pGY = Pr(D = 0|G, Y ) ≈ 1

In this case

Ũ0
β =

n0∑
i=1

Uβ(Yi, Gi)

1− pGiYi
≈

n0∑
i=1

Uβ(Yi, Gi)

Ũ1
β =

n∑
i=n0+1

Uβ(Yi, Gi)

pGiYi
≈ e−γ0

n∑
i=n0+1

Uβ(Yi, Gi)

eγ1Gi+γ2Yi

Thus γ0 does not affect estimation of β
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Combining estimators or estimating equations

Recall that we are interested in estimating β1 in the linear model

Y = β0 + β1G+ ε

and we have shown how we can estimate β1 from cases (β̂11) and
controls (β̂01)

How should we combine β̂11 and β̂01?
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Combining estimators

We consider the weighted combination: a0β̂
0
1 + a1β̂

1
1 , where

aT ≡ (a0, a1) =
1TV −1

1TV −11
,

1T = (1, 1), and V is the variance-covariance matrix of β̂01 and β̂11 .

Note: Derivation of variance estimator proceeds via a standard
Taylor series argument with modifications for case-control sampling
(details in manuscript)
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Simulated Data

Genotype Gi is generated using a minor allele frequency 0.3
assuming Hardy-Weinberg equilibrium

Yi is generated using Yi = β0 + β1Gi + ε, where ε ∼ N(0, 1) or
ε ∼ (χ2

2 − 2)/2

Di is generated using the logistic model

pGY ≡ Pr(D = 1|G, Y ) =
eγ0+γ1G+γ2Y

1 + eγ0+γ1G+γ2Y

We set β0 = σ2 = 1, and assume that the null hypothesis is β1 = 0
and the alternative hypothesis is β1 = -0.12

γ0 = log( η0
1−η0 ) with η0 = 0.001 and 0.1,

γ1 = log(1.0), ..., log(1.5), and γ2 = 0, log(2)/2, log(2)

We selected 1000 cases and 1000 controls, and repeated the
simulation 10,000 times
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% Bias, MSE, Type I error, and Power when ε ∼ N(0, 1)

Rare disease Common disease

γ1 IPWR SPREGR NAÏVE COND IPWK SPREGK NAÏVE COND IPSWK

% Bias 0 0.3333 0.0833 3.0833 0.0833 0.5000 0.4167 1.4167 1.5833 0.0833
log(1.2) 0.4167 0.8333 10.3333 0.1667 0.4167 0.1667 4.6667 5.0833 0.5000
log(1.4) 0.0833 1.1667 21.0833 0.0000 0.0833 0.6667 8.4167 12.000 0.0833

MSE 0 0.0013 0.0012 0.0012 0.0012 0.0013 0.0011 0.0012 0.0012 0.0018
log(1.2) 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012 0.0012 0.0012 0.0017
log(1.4) 0.0013 0.0011 0.0018 0.0011 0.0013 0.0012 0.0013 0.0013 0.0017

Type I error 0 0.0106 0.0100 0.0121 0.0106 0.0112 0.0130 0.0096 0.0096 0.0115
log(1.2) 0.0107 0.0140 0.0439 0.0096 0.0113 0.0120 0.0109 0.0131 0.0100
log(1.4) 0.0093 0.0100 0.1676 0.0090 0.0128 0.0070 0.0141 0.0208 0.0108

Power 0 0.7570 0.8170 0.8267 0.8152 0.7671 0.8190 0.8170 0.7998 0.5994
log(1.2) 0.7717 0.8240 0.7079 0.8276 0.7828 0.8240 0.7773 0.8727 0.6141
log(1.4) 0.7825 0.8560 0.5868 0.8404 0.7918 0.8370 0.7460 0.9210 0.6392
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% Bias, MSE, Type I error, and Power when ε ∼ (χ2
2 − 2)/2

Rare disease Common disease

γ1 IPWR SPREGR NAÏVE COND IPWK SPREGK NAÏVE COND IPSWK

% Bias 0 0.2500 0.0833 4.0833 0.5833 1.0833 1.0833 1.0000 2.4167 0.2175
log(1.2) 0.3333 0.5833 15.3333 0.0000 0.4167 2.4167 2.0833 9.2500 0.3775
log(1.4) 0.7500 1.3333 31.4167 0.6667 0.9167 2.1667 3.0833 20.333 0.1433

MSE 0 0.0010 0.0020 0.0021 0.0020 0.0011 0.0018 0.0015 0.0015 0.0015
log(1.2) 0.0010 0.0020 0.0024 0.0020 0.0011 0.0019 0.0015 0.0015 0.0014
log(1.4) 0.0010 0.0018 0.0035 0.0020 0.0011 0.0018 0.0014 0.0020 0.0013

Type I Error 0 0.0093 0.0060 0.0103 0.0108 0.0112 0.0100 0.0115 0.0118 0.0118
log(1.2) 0.0103 0.0150 0.0200 0.0113 0.0101 0.0090 0.0092 0.0183 0.0117
log(1.4) 0.0117 0.0130 0.0501 0.0102 0.0121 0.0100 0.0100 0.0393 0.0099

Power 0 0.8867 0.5490 0.5748 0.5474 0.8633 0.5710 0.6957 0.6725 0.7121
log(1.2) 0.8967 0.5530 0.3890 0.5666 0.8661 0.6090 0.6874 0.8128 0.7310
log(1.4) 0.9041 0.5810 0.2518 0.5755 0.8703 0.6370 0.6943 0.8949 0.7508
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Example

Extracted case-control sample from unrelated Framingham
cohort (case: BMI> 30)

Diabetics excluded

Sampled 243 cases and 243 controls from cohort (1114 with
GWAS data)

Fasting blood glucose (FBG) is considered to be secondary
phenotype

FBG and BMI are known to be related

Estimate relationship (β) between FBG and 100 SNPs most
associated with case-control status:

1 From case-control sample using secondary phenotype analyses
2 From entire cohort

Regress βs from 1 against βs from 2
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Example Statistics
in Medicine C. Xing and others

Figure 1. Comparison of bias correction in estimating �̂ for each of the four methods applied to the Framingham data.

10 www.sim.org Copyright c� 0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 1–10

Prepared using simauth.cls
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Example

Results from Framingham example

Slope Standard Error 95% CI

IPWK 0.99 0.1139 [0.7607, 1.2163]

COND 0.78 0.1323 [0.5197, 1.0488]

IPSW 1.26 0.1205 [1.0185, 1.5005]

NAÏVE 1.32 0.1012 [1.1171, 1.5220]
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Discussion

For illustration, we presented our approach in the context of a
linear model without covariates

Developed approach within a more general restricted moment
model framework

Can model binary, count data etc.

Covariates can also be included

Our approach is computationally efficient

SPREG takes ≈10 times more computing time (worse when
null is approximately true)
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Manuscript

C Xing, JM McCarthy, J Dupuis, LA Cupples, JB Meigs, X Lin, AS
Allen. Robust analysis of secondary phenotypes in case-control
genetic association studies. Statistics in Medicine. epub 30 May
2016. DOI: 10.1002/sim.6976
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